Speech waveform synthesis from MFCC sequences with generative adversarial networks
نویسندگان
چکیده
This paper proposes a method for generating speech from filterbank mel frequency cepstral coefficients (MFCC), which are widely used in speech applications, such as ASR, but are generally considered unusable for speech synthesis. First, we predict fundamental frequency and voicing information from MFCCs with an autoregressive recurrent neural net. Second, the spectral envelope information contained in MFCCs is converted to all-pole filters, and a pitchsynchronous excitation model matched to these filters is trained. Finally, we introduce a generative adversarial network -based noise model to add a realistic high-frequency stochastic component to the modeled excitation signal. The results show that high quality speech reconstruction can be obtained, given only MFCC information at test time.
منابع مشابه
Generative Adversarial Network-Based Glottal Waveform Model for Statistical Parametric Speech Synthesis
Recent studies have shown that text-to-speech synthesis quality can be improved by using glottal vocoding. This refers to vocoders that parameterize speech into two parts, the glottal excitation and vocal tract, that occur in the human speech production apparatus. Current glottal vocoders generate the glottal excitation waveform by using deep neural networks (DNNs). However, the squared error-b...
متن کاملCan we steal your vocal identity from the Internet?: Initial investigation of cloning Obama's voice using GAN, WaveNet and low-quality found data
Thanks to the growing availability of spoofing databases and rapid advances in using them, systems for detecting voice spoofing attacks are becoming more and more capable, and error rates close to zero are being reached for the ASVspoof2015 database. However, speech synthesis and voice conversion paradigms that are not considered in the ASVspoof2015 database are appearing. Such examples include...
متن کاملSEGAN: Speech Enhancement Generative Adversarial Network
Current speech enhancement techniques operate on the spectral domain and/or exploit some higher-level feature. The majority of them tackle a limited number of noise conditions and rely on first-order statistics. To circumvent these issues, deep networks are being increasingly used, thanks to their ability to learn complex functions from large example sets. In this work, we propose the use of ge...
متن کاملExploring Speech Enhancement with Generative Adversarial Networks for Robust Speech Recognition
We investigate the effectiveness of generative adversarial networks (GANs) for speech enhancement, in the context of improving noise robustness of automatic speech recognition (ASR) systems. Prior work [1] demonstrates that GANs can effectively suppress additive noise in raw waveform speech signals, improving perceptual quality metrics; however this technique was not justified in the context of...
متن کاملImprovement of generative adversarial networks for automatic text-to-image generation
This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018